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Atypical Development in Plant and Soil Nematodes
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Abstract: Observations of atypical developmental and anatomical characteristics have been recorded for many taxa of soil nema-
todes. They include the unusual occurrence of extra feeding structures, aberrant configuration of features of both male and female
reproductive systems, and the occurrence of intersexes assumed to be functionally female, functionally male, or non-functional. In
many cases, hypotheses have been advanced regarding the genetic or developmental mechanisms and environmental stimuli that
control, regulate, or facilitate abnormalities, but many are quite speculative and lack experimental verification. Further, the fitness
costs or advantages, and the heritability of aberrant characters are largely unknown, except where they clearly preclude reproduction,
either apomictic or amphimictic. Underlying mechanisms and ecological consequences may be difficult to study in organisms that are
not readily cultured under axenic or sterile laboratory conditions, however information on developmental processes in Caenorhabditis
elegans represents an important resource in which to seek homologies.

Key words: developmental abnormalities, extra odontostyle, multivulval condition, intersexes, developmental control, fitness costs,
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Observations of aberrant anatomical and morpho-
logical characteristics in plant and soil nematodes
trigger questions regarding their fitness costs and the
underlying control mechanisms that allow or facilitate
them. The occurrence of a ‘‘sixth’’ odontostyle in two
females of Dorylaimoides sp. was described by Choudhary
et al. (2004) as the rarest of rare phenomena. The
same phenomenon has been observed in females of
Dorylaimoides sp. in Japan (Okada, pers. com.). The se-
nior author recently observed an extra odontostyle in
a female of Aporcelaimium sp. with a fully developed
reproductive system (Fig 1. A, B). The extra odontostyle
was about 20% longer than the functional odontostyle.
The phenomenon has been reported on several occa-
sions in Xiphinema and Longidorus spp. (Fig. 2A,B;
Fig. 3A,B) (Dalmasso, 1967; Loof and Maas, 1972;
Zheng et al., 2000; Kumari, pers. com.).

The dorylaimid odontostyle develops and is stored in
a cell in the anterior part of the pharynx. The re-
placement odontostyle in the first juvenile (J1) stage,
which will become the odontostyle of the J2 stage, is
embedded in the base of the J1 odontophore. In sub-
sequent juvenile stages, the cell in which the odonto-
style develops migrates backwards in the pharynx until
the final molt occurs, at which time it migrates anteri-
orly and replaces the shed odontostyle of the previous
stage (Coomans and De Coninck, 1963; Grootaert and
Coomans, 1980; Carter and Wright, 1984). Because of

their direct damage to plants and their virus-vector attri-
butes, nematodes of the Longidoridae are the most
studied of the Dorylaimida. Yeates and Boag (2002)
documented growth spurts in Longidoridae based on
body volume assessments. Differences in length of atten-
uated odontostyles in Longidoridae are readily mea-
surable and have been used, in part, to infer development
stage. The replacement odontostyle is 14 to 20% longer
than the extant odontostyle in all juvenile stages of
Longidoridae where measurements are available (Yeates,
1972, 1973; Yeates and van Etteger, 1991; Yeates and Boag,
1992; Yeates et al., 1992; Yeates et al., 1997; Zheng et al.,
2000; Ye and Robbins, 2004a, 2004b; Handoo et al., 2005).

Choudhary et al. (2004) speculated that hormonal
changes inactivate the odontostyle forming cell after
the J4 stage. In some nematodes with long or heavy
odontostyles, including Longidorus, Xiphinema, Actino-
laimus and Discolaimus, a small spear tip or mucro has
sometimes been observed in the odontostyle-forming
cell in adults, suggesting that cessation of activity in
that cell is not absolute (Coomans and De Coninck,
1963; Coomans and van der Heiden, 1971; Loof and
Yassin, 1971; Grootaert and Coomans, 1980; Choudhary
et al., 2004). Where a complete extra odontostyle
has been observed and measured in adult specimens
(e.g. Dalmasso, 1967; specimens documented herein),
the extra odontostyle is longer than the functional
odontostyle, consistent with the observations for juve-
nile stages. Dalmasso (1967) speculated that the two
odontostyle phenomenon in adults might represent ei-
ther a genetic mutation or a throwback to ancestral
dorylaimid forms in which all stages, including adults,
had two odontostyles. As an alternative, Loof and Maas
(1972) suggested that the time at which the spear-
forming cell ceases its activity is somewhat variable re-
sulting in adults either without or with a mucro or a
complete extra odontostyle.
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It is difficult to study life stage events in nematodes
of the Dorylaimida since most are not readily cultured
in transparent media. When an extra odontostyle has
been observed in an adult nematode, the number of
developmental stages through which the individual has
progressed is generally unknown; also, the number (or
variability in number) of developmental stages of the
species in which the phenomenon was observed has
typically not been documented. From observation, and
inferred from body size measurements, some long-
idorids pass through only three juvenile stages rather
than the four stages documented for Tylenchida and
assumed for many other soil nematodes (Yeates and van
Etteger, 1991; Halbrendt and Brown, 1992). However,
three juvenile stages are reported in several genera
of the Plectidae (Holovachov, 2004), and completion
of the J1 stage within eggs of some Tylenchida could be
construed as a trend towards shortening the life cycle.
The loss of a developmental stage has been considered
to result from hormonally-mediated heterochrony
(Robbins et al., 1995, 1996).

Heterochrony is a change in the timing of devel-
opmental events in a species in relation to the ancestral

state exhibited by other species. One might hypothesize
that an extra odontostyle in an adult nematode is not
a developmental abnormality but an indication that
there is sufficient heterochronic plasticity in life course
events such that, under some circumstances, individ-
uals reach reproductive maturity at the fourth stage
and that some developmental processes for the fifth life
stage still proceed. Such life course plasticity would
allow individuals to achieve reproductive supremacy
over competitors. If an extra adult odontostyle results
from heritable genetic change due to a mutation, we
assume that the trait would be inherited by others and
appear frequently within the same population. If it is
controlled by ambient conditions, it might also occur
commonly among similarly-exposed individuals. How-
ever, if the extra odontostyle appeared in response
to local resource availability, resource-controlled het-
erochrony could be postulated and might affect in-
dividuals only at the patch level.

Determination of the number of juvenile stages re-
quires careful observation and measurement. Most
nematode species have been assumed, rather than
observed, to have four juvenile stages. It would be

FIG. 1. An extra odontostyle in a female of Aporcelaimium sp. (A-C). A: Entire nematode; B: Anterior region; C: Vulva region (photographs by
H. Ferris).

FIG. 2. An extra odontostyle in a female of Longidorus paravineacola (A-D). A: Entire nematode; B: Anterior region; C: Vulva region; D: Tail
(photographs by R.T. Robbins).
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interesting to know if the extra odontostyle in long-
idorids only occurs in those species known to have
three juvenile stages or if the phenomenon occurs
independently of the number of juvenile stages. Cer-
tainly, the observations that the extra odontostyle is
longer than the extant odontostyle allows the alter-
native explanation that it is not the odontostyle cell
that has continued activity but that sexual maturity is
achieved at an earlier life stage in some individuals.
Also of interest in the developmental ecology of these
taxa would be to determine whether a shortened life
cycle is obligate for all individuals of the species or
facultative depending on resource availability or some
other factor. Development of methods for culture and
study of the biology of these organisms would greatly
facilitate such observations.

These are not the only areas in which developmental
control of nematodes is poorly known. Features are
sometimes observed in nematodes that appear to be
developmental abnormalities rather than indicators of
plasticity or mutation and the occurrence of an addi-
tional odontostyle might fall into that category. For
example, the occasional occurrence of two or more
vulvas in longidorids (Fig. 4) (Robbins, 1986; Robbins
and Rubtsova 1996; Rubtsova et al., 1999; Kumari and
Decraemer, 2006), the observation of specimens with two
and three vulvas in Mesodorylaimus bastiani (Valocká and
Sabová, 1980), differences in number of supplements
in males of some Plectus species (Holovachov, 2004),
and other examples in mononchids and tylenchids as
reviewed by Kumari and Decraemer (2006). Abnor-
malities in development of the vulva are well under-
stood in hermaphrodites of Caenorhabditis elegans. The
vulva is initiated when the lin-3/EGF (epidermal growth
factor) gene of the anchor cell produces signals which
induce development of vulva precursor cells in the
epidermis. Disruption of those signals, or interference

with their pathways, results in vulva abnormalities. In
wild-type C. elegans, there are six cells capable of re-
sponding to the initiation signals, however only three
develop into the vulva. When the signal is weak, or the
pathway is compromised, hermaphrodites may develop
without vulvas. When lin-3/EGF is over-expressed, or
there is a failure of control of the signalling molecules
so that they are not received by the appropriate cells,
more than three or even all six vulva precursor cells
respond to the signals and a multivulval condition re-
sults (Sternberg and Horvitz, 1986; Hill and Sternberg,
1992; Sternberg 2005; Saffer et al., 2011). Are there
similar transcriptional accidents or mutations that re-
sult in multivulval conditions of Dorylaimida? When
there are two or more vulvas present, are all connected
to the uterus(i) and functional?

FIG. 4. Two vulvas in a female of Californidorus cralleyi (A-D). A:
Entire nematode; B: Anterior region; C: Vulva region; D: Tail (slide:
USDA collection; photographs by R.T. Robbins).

FIG. 3. Extra odontostyles in two females of Xiphinema brevicollum (A-F). A, E: Entire nematode; B, F: Anterior region; C: Vulva region; D: Tail
(slide: S. Kumari; photographs by R.T. Robbins).

Aberrant development in nematodes: Ferris, Robbins, Yeates 3



Other examples of aberrant development include the
rare occurrence of male nematodes of various nominal
species or their occurrence in only some populations as
observed in Xiphinema insigne (Robbins et al., 2000).
Similarly, the apparent occurrence of males at times of
population stress is a phenomenon that may reflect
genetic, heterochronic or environmentally-mediated
mechanisms. Also, polyploidy is well known in several
nematode genera, including Ditylenchus and Meloidogyne,
with consequences to development and morphology
(Triantaphyllou, 1991; Subbotin et al., 2005). For
example, tetraploid females of Synonchium pacificum
(Chromadorida) were regarded by Yeates (1967) as hav-
ing non-functional ovaries. The underlying molecular and
chromosomal mechanisms of these varied features con-
tribute to genome plasticity, genetic variation and adaptive
responses (Castagnone-Sereno, 2006). They may also un-
derlie accidents and variability in genome transcription.

In his interesting paper on the frequent occurrence
of intersexes in mermithid nematodes, Steiner (1923)
summarized several reports dating from the late 19th

and early 20th centuries of intersexes in both soil and
marine nematodes. Recent observations on intersexes
include the occurrence of female nematodes with male
features such as ventromedian supplements in a pop-
ulation of Longidorus biformis (Ye and Robbins, 2004a)
and of a vulva, supplements and rudimentary spicules
in intersexes of L. elongatus (Fig. 5; Robbins, 1986),
Leptonchus obtusus (Goseco and Ferris, 1973) and
Enchodelus veletensis (Pedram et al., 2009). Interestingly,
at least in the L. obtusus example, the intersexes
with male features occurred in a species where males
were otherwise unknown. Among the Secernentea (or
Chromadorea sensu De Ley and Blaxter, 2004), in-
tersex males of Meloidogyne javanica with vulvas have
been reported (Chitwood, 1949; Triantaphyllou, 1960;

Davide and Triantaphyllou, 1968; Eisenback et al., 1981)
and the occurrence of intersexes is documented for
Ditylenchus triformis (Hirschmann and Sasser, 1955) and
Tylenchorhynchus capitatus (Wouts, 1966). Zhou et al. (2009)
listed intersexes of 30 species of plant nematodes rep-
resenting nine genera and seven families.

Developmental sex reversal from female to male under
adverse environmental conditions is well documented
in Meloidogyne (Triantaphyllou, 1973; Papadopoulou
and Triantaphyllou, 1982) and Globodera (Trudgill, 1967)
and may result in diorchic males as both arms of the
original female genital primordia develop. In contrast,
Roy and Gupta (1975) speculated that intersexes might
result as intermediate stages in sex reversal from males
to females. The protandrous hermaphrodites of C.
elegans indicate flexibility of function in the gonad and
its progenitors, as does the development under heat
shock and other stressors of functional males in that
species (Sulston and Horvitz, 1977; L’Hernault, 1997;
Anderson et al., 2010). Hermaphrodites (XX chromo-
some complement) of a temperature-sensitive mutant
of C. elegans produced abundant oocytes at 168C but few
at 258C. Males (XO) produced a normal quantity of
sperm at 168C but developed as intersexes at 258C,
which had characteristics intermediate between males
and hermaphrodites and which produce no sperm and
few oocytes (Nelson et al., 1978). Intersexes are also
determined by the ratio of sex chromosomes to auto-
somes in polyploid individuals (Madl and Herman,
1979). Interestingly, sexual differentiation in C. elegans,
and presumably in other nematodes, is not restricted to
the reproductive system; most tissues and organs differ
between the sexes in anatomy or physiology, with sexual
specialization occurring in 40% of male and 30% of
hermaphrodite cells. The sexual differentiation of so-
matic cells is regulated by a global sex determination

FIG. 5. An intersex of Longidorus elongatus (A-D). A: Entire nematode; B: Anterior region; C,D: Posterior region with male features; E: Vulva
region (slide: H. Jensen, USDA collection; photographs by R.T. Robbins).
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pathway. Regulated by the number of X chromosomes,
a series of inhibitory interactions establishes the activity
level of a terminal regulator gene (tra-1, transformer 1),
which switches differentiation of somatic cells to either
male or hermaphrodite configurations (Hodgkin and
Brenner, 1977; Sulston and Horvitz, 1977; Hodgkin,
1987; Hunter and Wood, 1990; Zarkower, 2006).

In nematodes, as in the crustacean Gammarus duebeni,
the occurrence of intersexuality was considered a fit-
ness cost of the flexibility of environmentally influ-
enced sex determination (Dunn et al., 1993). Similar
reasoning might be applied to the consequences of de-
velopmental plasticity. Does intersexuality impose a fit-
ness cost in nematodes? Are intersex individuals that
are functional females less fecund? Are intersexes that
are functionally male less competitive for females or
produce fewer sperm? Anderson and Kimpinski (1977)
observed that cells in the germinal zone of the gonad of
an intersex of Aphelenchoides composticola did not mature
and that, with one exception, mature oocytes had not
been reported in intersexes of that genus. Further an-
swers to questions of fitness in a range of nematode
taxa will require experimental determination.

The developmental and anatomical aberrations out-
lined above may result from several quite different
mechanisms: 1. Failure to terminate juvenile develop-
mental processes in the adult stage (extra odontostyle);
2. Gender interchangeability perhaps resulting from
environmentally-induced stress (intersexes); and, 3.
Anatomical aberrations possibly resulting from acci-
dents in transcription of the genetic code or mutations
which may or may not be mechanistically limiting to
reproduction and therefore may or may not be main-
tained in the genome through either apomixis or am-
phimixis. In most cases the abnormalities have been
reported for female nematodes, probably because the
abundance of females is proportionally much greater
than that of males in most soil nematode species. In
addition to the important use of valuable molecular
tools, as exemplified by the understanding of develop-
mental regulation in C. elegans, there remains great
value in critical observation of nematode morphology,
anatomy and life history as a basis for understanding
their biology and roles in ecological processes.
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