Ecosystem services of the soil food web after long-term application of agricultural management practices

Xiaoke Zhang a, b, Howard Ferris a, *, Jeffrey Mitchell c, Wenju Liang b

a Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
b Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
c Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA

Article info

Article history:
Received 13 October 2016
Accepted 29 March 2017

Keywords:
Nematode biomass and metabolic footprints
Species diversity
Cover crops
Energy flow
Functional guilds
Mineralization
Regulation

Abstract

The structure of soil nematode assemblages was assessed in field plots in the San Joaquin Valley of California which have 16-year management system histories. Attributes of the ecosystem functions of the assemblages were determined in laboratory studies. The four agricultural management systems were no tillage (minimum tillage) with cover crops in the intervals between economic crops, standard tillage with cover crops, minimum tillage without cover crops and standard tillage without cover crops. The economic crops were sorghum and garbanzo beans. A soil column system was used in laboratory studies to evaluate the nitrogen mineralization ecosystem service associated with nematode assemblages in soils from the four management systems compared to that in defaunated soil. In an additional comparison, defaunated soil was amended with mineral fertilizer solution for comparison with the mineralization service of the soil fauna. Management systems using cover crops, which created a continuity of both photosynthetic production and roots in the soil, strongly enhanced the nematode assemblages in the field soil. Management systems with cover crops had greater total abundance, measured as numbers, biomass and metabolic footprints, of nematodes, and also of the functional guilds of nematodes considered important in soil fertility and as prey for predators. Leachates from soil columns with intact nematode assemblages had greater total mineral nitrogen and supported greater plant growth than those from defaunated columns. Soil carbon levels in field plots were strongly affected by the management systems. The biomass and diversity-weighted footprint of bacterivore and microbivore (bacterivores plus fungivores) nematodes, in turn, were correlated with levels of soil carbon.

© 2017 Published by Elsevier Ltd.

1. Introduction

Ecosystem services provided by soil organisms include the cycling of mineral nutrients and the regulation of pest species; they are important contributors to the availability of plant nutrients and to supporting food and fiber production (de Vries et al., 2013; Ciobanu et al., 2015). The below-ground decomposer system provides the basis for soil fertility through recycling plant material and mineralizing soil nutrients. The rates and magnitudes of these ecosystem services are determined by the composition, abundance and diversity of the soil biota (Ruess and Ferris, 2004; de Vries et al., 2013; Ferris and Tuomisto, 2015).

Soil nematodes, as a major mesofauna component of soil food webs, play important roles in ecosystem functioning, including organic material decomposition, nutrient turnover and energy transfer (Hattenschwiler et al., 2005; Wall et al., 2012; Coleman and Wall, 2015). Among soil nematodes, microbivores (bacterivores and fungivores) are key intermediaries in decomposition processes and nutrient cycling; they increase bacterial turnover and accelerate decomposition of soil organic matter (Bardgett and Chan, 1999; Neher, 2001; Yeates, 2003). Also, nematodes transport bacteria to new resources, further accelerating the rates and magnitude of decomposition activity (Brown et al., 2004; Fu et al., 2005). Since microbivore nematodes ingest more of certain nutrients than required, the excesses are excreted in a mineral or readily-mineralizable form, and thus may enhance plant growth (Ferris et al., 1997; Ingham et al., 1985; Neher et al., 2012). Specialist predator and omnivore nematodes are also involved in nutrient cycling through a more indirect process of predation on microbial grazers and herbivore species (Ferris et al., 2012a; Holtkamp et al., 2004).
Besides their direct contributions to ecosystem services, nematodes are also useful bioindicators of the abundance and activity of other soil organisms providing similar services (Ferris et al., 2012b; Georgieva et al., 2005; Sánchez-Moreno et al., 2008, 2009; Yeates et al., 2009). Based on their abundance and turnover rates, soil nematodes can account for up to 25% of nitrogen mineralization in the soil (Ferris et al., 2012a). Metabolic footprints of nematode functional guilds, and the diversity of species comprising the guilds, provide a quantitative assessment of the magnitude of ecosystem functions (Ferris, 2010; Ferris et al., 2012c; Ciobanu et al., 2015; Ferris and Tuomisto, 2015; Zhang et al., 2015).

Soil ecosystem services, supported by organic resources, are the foundation for agricultural production systems that do not rely on high inputs of mineral fertilizer or synthetic pesticides. Agricultural management practices impact soil organic matter levels and, directly and indirectly, the biomass and diversity of soil nematodes, with consequent effects on nutrient cycling (Balota and Filho, 2004; DuPont et al., 2009; Sánchez-Moreno et al., 2009). They also affect the resilience of soil food webs and ecosystem functions (Zhang et al., 2013, 2016). Most previous research has been focused on the effect of agricultural management practices on the structure and composition of soil nematode assemblages (Li et al., 2009; Sánchez-Moreno et al., 2009; Zhang et al., 2012, 2016). But what is the relationship between the functions and ecosystem services of the faunal assemblage and its structure? There are voids in our validation of the relationships between the structure and functions of ecosystems. The soil provides wonderful opportunities for examining such relationships without the cost of landscape-scale experimentation.

We analyzed the effects of agricultural management strategies on soil nematode assemblages in a field experiment and conducted laboratory studies to determine the relationship between structure of those assemblages and the associated ecosystem services as reflected in soil fertility and plant growth. We hypothesized that: 1) after 16 years of different agricultural practices, the soil ecosystems at the field site had transitioned to new states; 2) the resultant differences in nematode assemblages and soil food webs in soils under different management systems would be reflected in rates of nutrient mineralization; and 3) that mineral fertilizer applications can be reduced in management systems in which the soil food web is providing adequate plant nutrition.

2. Materials and methods

2.1. Field experiment

2.1.1. Experimental site

The field study site is located at the University of California’s West Side Research and Extension Center in Five Points, CA (36°20'29"N, 120°7'14"W). The mean maximum and minimum annual air temperature in the area is 24 °C and 8 °C, respectively. Annual precipitation is about 180 mm. The soil is classified as Panache clay loam (fine-loamy, mixed superlative, thermic Typic Haplumbrepts) (Veenstra et al., 2007). A field comparison of conservation and standard tillage, with and without cover crops between the economic crops, was established in 1999 (16-year management history as of the end of 2015; Mitchell et al., 2017).

The farming systems in this experiment are described in detail elsewhere (Veenstra et al., 2007). The only soil disturbance operations in the control tillage systems were shallow cultivation during establishment of a tomato (Solanum lycopersicum L.) crop, used as the economic crop, during the first eight years of the experiment. In subsequent years, sorghum (Sorghum bicolor (L.) Moench) or garbanzo beans (Cicer arietinum L.) have been used as economic crops. In 2012, the conservation tillage treatments became true no-tillage systems with the only soil disturbance occurring at the time of seeding in the sorghum plots or garbanzo plots. Consequently, herein that treatment is referred to as no tillage which was its condition during the current study.

The field experiment is in a randomized complete block design with four replicates. Management treatments include two factors, i.e. tillage level and presence or absence of cover crops in the intervals between economic crops. The four treatments are no tillage and cover crops (NTCC), standard tillage and cover crops (STCC), no tillage and no cover crops (NTNO) and standard tillage and no cover crops (STNO). The treatment philosophies are that cover crops maximize the time during which there are roots in the soil and resources available to the soil food web while no tillage minimizes disruption of the soil environment and the habitat provided for soil organisms. Treatment plots, 9.1 m × 82.3 m, each consist of six beds. A six-bed buffer area separates tillage treatments to enable system-specific equipment operations without disturbing neighboring plots.

The cover crop mixture of Juan triticale (Triticosecale Wittm.), Merced rye (Secale cereale L.) and common vetch (Vicia sativa L.) was applied at 19 cm row spacing on the beds at a rate of 89.2 kg ha\(^{-1}\) (30% triticale, 30% rye and 40% vetch by weight) in late October in the STCC and NTCC plots. After 2012, the basic cover crop mixture was changed to include a greater diversity of species, including pea (Pisum sativum L.), faba bean (Vicia faba L.), radish (Raphanus sativus L.), and phacelia (Phacelia tanacetifolia Benth.) (Mitchell et al., 2015). The cover crop plots, which are planted in advance of winter rains, were irrigated once with 10 cm of water in 1999 but not in subsequent years. Plots have been planted with either sorghum or garbanzo beans as summer or winter economic crops, respectively. Therefore, the field experiment is comprised of 32 plots (2 crops × 4 management systems × 4 replicates).

2.1.2. Field sampling for nematode assemblage assessment

Soil samples were collected in the 32 plots of the field experiment on April 27 and Oct 20, 2015. Each sample was a composite of 20 sub-samples collected randomly with a 2.5 cm diameter auger at 0–20 cm depth and then mixed. The samples for nematode assemblage assessment were stored at 4 °C until analysis.

2.1.3. Soil fertility

Soils were sampled for total C and N in December 20, 2014 after harvest of the economic crop. From each plot, six to eight 7.6-cm-diameter cores at 0–15 cm depth were composited, sieved through a 2-mm screen, pulverized to pass through a 60-mesh screen, and dried to constant weight according to protocols of the University of California, Davis Analytical Laboratory (http://anlab.ucdavis.edu/sampling/sampling-and-preparation). Total soil carbon was measured using a combustion C analyzer (CE Elantech, Inc., Lake-wood, NJ). Bulk density was measured by the compliant cavity method (USDA NRCS, 2004). Total soil C levels were adjusted for bulk density and are reported as mg cm\(^{-3}\) dry soil (Mitchell et al., 2017).

2.2. Ecosystem function experiments

2.2.1. Soil column microcosms

Soil-column microcosms were constructed from 30-cm lengths of 4-cm i.d. polyvinyl chloride pipe with a drain hole in the basal cap. A stainless steel mesh with 0.24 mm apertures was placed in the bottom of each column to prevent soil loss. A 50 g layer of sand was placed above the mesh to facilitate drainage. Alfalfa leaf and stem tissue was dried and ground to a coarse powder. Alfalfa powder (5 g) was gently incorporated into 250 g of soil from each of
of feeding habit (bacterivores, fungivores, herbivores, omnivores-predators) and colonizer-persister value of life-course strategies (1–5) (Ferris et al., 2001; http://plpnemweb.ucdavis.edu/nemaplex). We included the abundance of microbivores (bacterivores plus fungivores) as an indicator of the total activity in decomposition channels. Nematode abundance was expressed per 100 g dry soil.

2.3.2. Nitrogen

Frozen leachate samples were thawed. The NO$_3$-N and NH$_4$-N were extracted using the methods of Doane and Horwath (2003). The concentrations of soil NO$_3$-N and NH$_4$-N in the leachates were determined using a microplate reader. Standard curves were developed using known concentrations of NH$_4$Cl and KNO$_3$. The concentrations of NH$_4$-N and NO$_3$-N in the samples was determined by comparison with the known standards. The total amount of mineral N (NH$_4$-N and NO$_3$-N) was expressed as µg N mL$^{-1}$ leachate.

2.4. Statistical analyses

Data from field samples were averaged over the two sampling times (April and October 2015) to capture the aggregate effects on the nematode assemblages of the 16 years under each management system. Nematode metabolic footprints, or nematode ecological indices, and the assignment of nematode functional guilds and colonizer-persister (cp) values were all calculated by the Ninja application (Seriebriennikov et al., 2014) and as provided in http://plpnemweb.ucdavis.edu/nemaplex. Species diversity within functional guilds and diversity-weighted metabolic footprints were calculated per Ferris and Tuomisto (2015). Where necessary and appropriate, nematode data were ln (x + 1) transformed to achieve normality prior to statistical analysis. The software package SPSS 16.0 for Windows (SPSS Inc., Chicago, IL, USA) was used for data analysis. Effects of crop, tillage and cover crops on nematode assemblages in the field experiment, and those of tillage, cover crop and fauna in the soil column experiment were analyzed by the general linear model (GLM) procedure and by the statistical procedures provided in Microsoft Excel spreadsheets.

3. Results

3.1. Field experiments

3.1.1. Effects of management systems on soil carbon levels

In data from the field plots described by Mitchell et al. (2017), the effect of management systems (tillage level and presence of absence of cover crops) on soil organic matter and soil organic carbon was significant (P < 0.05). The level of total soil carbon in NTCC plots was greater than those in STCC and STNO (P < 0.05; Fig. 1).

3.1.2. Nematode assemblage composition

In total, 31 genera nematode were identified across both sampling periods in the management system field plots, 18 in the first sampling and 28 in the second (Table 1; Supplementary Table S1 and S2). Among these genera, the predominant trophic group in numerical abundance was the bacterivores (50.2%), followed by fungivores (21.5%), herbivores (18.3%) and all predators (9.6%). The bacterivore, Acrabovoloeidae, was the dominant genus in all management systems.

The numerical and biomass abundance of the total soil nematode assemblages in field plots were significantly greater where cover crops were included in the management systems (P < 0.01; Fig. 2). The inclusion of cover crops enhanced the diversity of
bacterivore and herbivore nematodes, and enhanced the biomass and metabolic footprints of bacterivores and fungivores (P < 0.05; Table 2). The abundance of nematodes in all functional guilds, the diversity of bacterivores, and the metabolic footprints of bacterivores and fungivores were significantly higher in NTCC and STCC than in STNO and NTNO in plots with a garbanzo bean winter economic crop (P < 0.05) (Table 2). There were significant relationships between the diversity-weighted metabolic footprints of bacterivore and microbivore nematodes and soil carbon (P < 0.01, Fig. 3).

3.1.4. Predator-prey relationships in the field plot nematode assemblages

Bacterivores and fungivores were more abundant in the cover-cropped systems (Fig. 2) and the abundance of all predator nematodes (specialists and generalists) was significantly related to the abundance of those functional guilds (r = 0.55, P < 0.01; r = 0.46, P < 0.01). When one outlier data point was removed from the dataset and the 3-lag moving average pseudoreplication technique was used, a positive relationship emerged between predator biomass and the diversity-weighted footprint of enrichment opportunistic nematodes and all potential nematode prey taxa (r = 0.70, P < 0.01; Fig. 4). A large majority of the predator taxa was actually generalist predators or omnivores. Consequently, their abundance was probably also responding to non-nematode prey organisms.

3.2. Soil column experiments

3.2.1. Nematode assemblage composition

At the end of the soil column incubation period, the defaunated treatments (DF and DFF) remained essentially nematode-free and there were no significant field management system effects on total nematode abundance in the columns. The nematode assemblage in the faunated columns (F) consisted of 15 genera at the end of the incubation period (Table S3). Their proportional abundances were 45% bacterivores, 30% fungivores, 21% generalist and specialist predators and 35% herbivores. The enrichment-opportunistic bacterivore, Mesorhabditis was the dominant genus in all faunated management system columns.

3.2.2. Plant growth in response to leachates from soil columns

Fresh and dry weights of radish plants used to bioassay the effects of leachates from the soil columns were significantly affected by the management systems applied to the soils over the 16-year period of the field experiment. They were greater in plants irrigated with leachates from faunated than defaunated column treatments. Plant height and root length in the columns with nematodes were greater than those in defaunated treatments (P < 0.05) and ranked as F > DF > DFF (Fig. 5). The mineral fertilizer content of the DFF treatments was apparently excessive and had an adverse or even toxic effect on the plant growth.
3.2.3. Nitrogen concentrations in leachates

Cumulative mineral N was determined from the aggregated samples of 1 mL of leachate from each column collected each day. The concentrations of total mineral nitrogen in leachates of the faunated soil from no tillage and cover crop field management system were significantly greater than those from either tillage system without cover crops (P < 0.05; data not shown). In the F treatment, where the field nematode assemblage was not altered by defaunation, and the nitrogen in the leachate not altered by fertilizer application, we tested the relationship between cumulative mineral N and the species-diversity-weighted metabolic footprint of microbivore nematodes. Cumulative N provided a measure of the degree of mineralization of the alfalfa feedstock in the columns during the 30-day incubation period. The cumulative N concentration was correlated with the diversity-weighted metabolic footprint of the microbivore guild in the field plot soil placed in each column at initiation of the incubation period (r = 0.73; P < 0.01; Fig. 6), and with the diversity-weighted footprint of bacterivores (r = 0.69; P < 0.01).

4. Discussion

4.1. The effect of agricultural practices on soil nematode assemblages

Total nematode abundances, both numbers of individuals and biomass, in four functional guilds were greater in field plots with 16 years of history of cover crops grown in the intervals between economic crops. That is, in plots where the supply of resources to the soil food web through rhizodeposition and crop residues was continuous rather than punctuated. The increased availability of carbon in those plots provided resources for soil biota (Zhang et al., 2012; Shaw et al., 2016) and that was reflected in the magnitude and diversity of functional guilds of the nematode assemblages.

The abundance of nematode predators was linked to that of the prey nematodes (bacterivores, fungivores and herbivores). From the viewpoint of bottom-up forces, high abundance of prey favored the maintenance of higher abundance of predatory nematodes (Sánchez-Moreno et al., 2011). Predatory nematodes may regulate the prey nematodes by feeding, thus channeling resources from lower to higher trophic groups (Wardle and Yeates, 1993; Neher, 2001; Ferris et al., 2012b).

Bacterivores and fungivores, near the entry level of decomposition channels, are more direct beneficiaries of resource subsidy...
than other functional guilds. Greater biomass and metabolic footprints of nematode guilds under cover-cropped systems was also related to mechanical incorporation of organic resources in the upper layers of the soil profile, as occurred with standard tillage operations. While mechanical incorporation of organic material through tillage may benefit opportunistic taxa, it is generally considered detrimental to large-bodied predator species that are more sensitive to environmental disturbance (Ferris et al., 2001; Zhang et al., 2012). However, in this study, omnivore and predator nematodes in the field plots were not negatively affected by the disturbance effects of soil tillage. It is conceivable that
disturbance-tolerant taxa of omnivores and predators have been selected during the 16 years of exposure to farming systems with standard tillage.

Cover crop quantity and resource quality are important determinants of the magnitude of soil food web services (DuPont et al., 2009; Andrés et al., 2016). The incorporation of plant residues or other organic matter increases the supply of resources to the soil food web and fuels the ecosystem (Li et al., 2009). In the current study, continuous input of resources into the soil food web in management systems that include cover crops had greater impact on soil nematode communities than the incorporation effects associated with tillage. Zhang et al. (2012) also found that the responsiveness of opportunistic soil nematode species offset any negative effects of tillage disturbance.

4.2. Metabolic footprints and energy flows through nematode assemblages

Nematode metabolic footprints convey more information on allocation of C into growth and egg production, and to its utilization in metabolic activity, than numerical abundance or even biomass of individuals. They are useful indicators of the magnitude of soil food web functions (Ferris, 2010; Bhussal et al., 2015). In the present study, metabolic footprints of microbivore nematodes were greater in cover-cropped than non-cover-cropped systems, which reflected the greater amount of C flowing through food web decomposition channels in those systems.

Additional resources (such as cover crops and organic amendments) directly affect organisms at the entry level of the food web, and bacterivore and fungivore nematodes are always the first responders to resource enrichment (Ferris et al., 2012c; Ferris and Tuomisto, 2015; Steel and Ferris, 2016). Thus, besides considering their ecosystem services in nutrient mineralization, it is instructive to consider the role of these nematodes in the indirect service of providing prey to predator nematodes and thus enhancing the regulation of opportunistic target species, including parasites of plants. Ferris et al. (2012b) termed bacterivore and fungivore nematodes the “amplifiable prey” because their abundance can be enhanced by managed resource inputs. They theorized that such increase would provide resources for predator nematodes which would also increase and enhance the regulation of “target prey” plant-parasitic species. The regulation of target prey was not determined in this study but there was a clear relationship between predator biomass and the biomass of amplifiable prey.

Weighting of the metabolic footprints by species diversity was proposed by Ferris and Tuomisto (2015) in recognition that the magnitudes of ecosystem services of functional guilds of nematodes and other organisms must be related to, besides their total metabolic, the differences in size, behavior and activity that is provided by greater species diversity. The diversity-weighted footprints of bacterivores and other microbivores were significantly positively related to soil organic carbon. Similarly, a high species diversity of prey nematodes would provide a range of resources with different size and activity to sustain higher-order predator guilds (Ferris and Tuomisto, 2015).

4.3. The effect of mineralization roles of nematodes on plant growth

Fungal and bacterial-feeding nematodes, and other organisms that graze on primary decomposers, accelerate the decomposition of soil organic matter and enhance the mineralization rates of nutrients available for plant growth. The grazing is considered to stimulate microbial growth turnover while movement of the microbivores transports microbes to new resources. Differences in C:N ratio between nematodes and their prey, and the excess organic N associated with C used in respiration, result in the excretion of excess N in mineral form by the nematodes (Ingham et al., 1985; Ferris et al., 1997, 2012c, 1998; Chen and Ferris, 1999; García-Palacios et al., 2013; Gebremikael et al., 2015). In the current experiments, all component parts of plants irrigated with leachate from columns with the soil fauna intact were greater than those irrigated with leachate from defaunated columns. Also, the cumulative concentrations of mineral N were greater in leachates from the faunated than from the defaunated columns.

Our idea with the defaunated columns receiving dilute fertilizer solution each day was to allow us to determine whether the N mineralized by the soil fauna would allow reduction in fertilizer application rates in field sites with high metabolic footprints of appropriate functional guilds of nematodes. In fact, the mineral fertilizer leachate, although applied at rates calculated from label recommendations, was apparently too concentrated and had a phytotoxic effect on the bioassay plants. However, plants irrigated with leachate from the faunated soil columns supported robust growth of radish plants.

5. Conclusions

Through the current research and other cited studies, the abundance and species diversity of microbivore nematodes, and organisms of which they are bioindicators, are strongly linked to levels of total soil carbon. Those levels can be enhanced by long-term and consistent application of farming systems that maximize uninterrupted C-fixation or C-amendment and which reduce soil disturbance. The physiological, behavioral and activity differences among diverse microbivore species facilitates successional changes in food web structure without compromising ecosystem services. In such functional succession, the players change but the game continues. The evolution of our understanding of the functional attributes of the soil food web continues to underscore the importance of soil carbon in soil quality and soil health.

Acknowledgements

We thank Dr. L.E. Jackson and B. Molinos Lamas (Department of Land, Air and Water Resources), and Dr. A.K. Hodson (Department of Entomology and Nematology) for assistance and guidance in the determination of nitrogen and use of the laboratory facilities, and Dr. A. Shrestha at the University of California Davis for providing the data on total carbon in the field plots. We thank Dr. W.R. Horwath for guidance on the appropriate units for soil carbon and nitrogen. We gratefully acknowledge the technical assistance of Xuyun Yang and Liang Zheng. This research was supported by the National Natural Science Foundation of China (Key Program) (No. 31330011) and the State Scholarship Fund from Chinese Scholarship Council.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.soilbio.2017.03.017.

References

