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Probability Range in Damage Predictions as 
Related to Sampling Decisions 

H .  FERRIS 2 

Abstract: The  risk involved in basing a nematode management  decision on predicted crop loss is 
related to the uncertainty in the  crop damage function and er ror  in measuring nematode population 
density. T h e  sampling intensity necessary to measure a nematode population with specified precision 
varies with population density. Since the density is unknown prior to sampling, optimum sampling 
intensity for a management  decision is calculated for the economic threshold population level 
associated with the management  cost. Population densities below the threshold are measured with 
greater  precision than required; those above the threshold are less precisely measured, but  invoke 
management .  T he  approach described provides resolution to sampling strategies and allows assess- 
ment  of the risk associated with the management  decision. 

Key words: crop loss, management  decisions, sampling intensity, risk analysis, economic thresholds. 

Variability in the spatial distribution of  
nematodes, error  in population density es- 
timates, and the resultant uncertainties as- 
sociated with nematode damage functions 
have been examined elsewhere (4). I dis- 
cussed earlier how the probability level as- 
sociated with the damage estimate is a 
function of  two probability levels, that of  

m + (1 - m)z P-T + t~-Sy which is adapted 
from the basic damage function Of Sein- 
horst (11). In this relationship, y is the rel- 
ative yield, m is a minimum relative yield 
at high nematode population densities, P 
is the nematode population density, T is'~]:) 
the tolerance level below which damage is 
not observed, and z is a slope parameter  

the damage function confidence interval of  the damage function. Further, Sy = 

and ~ o--f-the-~pu~-~a~i~0~n~..es~i~m.~at~i ~ i4):-" Sy.xV/(1/n + x2/Zx 2) where x is the devia- 
These uncertainties result from variability 
in nematode distribution, biology, host -  
parasite interactions, and seasonal effects. 
Here I explore the problem of determin- 
ing the optimum sample number  to arrive 
at a damage prediction with a specified 
probability level. This paper involves the 
development of  conceptual tools and pro- 
vides a forum for their exploration. The  
validity of  the tools depends upon the un- 
der ly ing percep t ions  and conclusions,  
which are presented to allow objective 
evaluation. 

Rationale: The first requirement for 
nematode damage prediction is an appro- 
priate damage function. Confidence bands 
about a damage function can be calculated 
from the cu m u l _ a t i y e  .d~yiation frgm_the 

tion of  each predictive independent vari- 
able from the mean of such variables, ~x 2 
is the sum of all such deviations, and t~ is 
Student's t value for the required proba- 
bility level. The  value Sy.x is (~d2y.x)/(n - 
2) where d is the deviation of  an observed 
and predicted point and n is the number  
of  points on which the model is based (12). 
The  a value is the proport ion of  predic- 
tions which will not fall within the confi- 
dence bands (Fig. 1). Some questions may 
be raised as to the validity of  calculating 
the confidence bands usi_ng technJ.ques es, 
sent!ally derive d from !inear reg~essi9n apt 
proaches; however, the principles ar e not 
~ffected by the mechanics Of ithe a!gebra. 

The  second requirement for the nema- 
tode damage prediction is an estimate of  

function o_bserv_aL~pps 9n~ which the the nematode population density for which 
function is based (12). The  damage func- 
tion and confidence bands used in this paper 
can be summarized by the relationship y = 
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the prediction is to be made. This estimate 
will have an associated error component  
(4,7,10). Determination of  a confidence in- 
terval for the population estimate requires 
knowledge of  the standard error of  this 
estimate. Since nematode population dis- 
tributions can usually be described by the 
negative binomial  distribution (6,9), it is 
possible to calculate the expected standard 
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Fro. 1. Relat ionship be tween  yield and nema tode  
density indicat ing conf idence  bands associated with 
the  damage  funct ion,  economic  decision value (~z), 
economic  th reshold  popula t ion  (P), predict ive  popu-  
lation interval (P, to P=), and economic  decision in- 
terval (Y~ to Y2). 

error  if  the mean (#) and dispersion param- 
eter  (k) o f  the distr ibution are known (2). 
A problem with this approach is that  the 
dispersion parameter  (k) is defined as a 
funct ion o f  the mean density and o f  the 
variance of  the population,  which must be 

× known in advance. Since both  mean and 
variance var_.y:__with_-fiiim; ~:Wedic-tio~ ~ ~ IC 
may b'=--~"e=ch~'"--~cul-t.--Knot-l'idr est imator of  the 
er ror  associated with a populat ion estimate 
can be obtained th rough  Taylor ' s  power 
law (13,14) which states that  in aggregated 
populations the variance of  the populat ion 
estimate is an exponent ial  funct ion of  the 
mean.  T h a t  is, s 2 = ax b where s 2 is the vari- 
ance, x is the mean populat ion estimate, a 
is a coeff ic ient  i n f l uenced  by sample  
size (2,13,14), and b is a species-specific 
index of  aggregat ion (2,16). This variance 
to mean relationship can be linearized 
t h r o u g h  log t r a n s f o r m a t i o n :  log s 2 = 
log a + b log x, allowing de te rmina t ion  of  

{ -- ~he values a and b by linear regression. At 
small sample numbers the variance to mean 
ratio may be variable; however,  it stabilizes 
rapidly as the number  o f  samples used to 
calculate the variance and mean  is in- 
teased. T h e  stability o f  the parameters  of  

Taylor 's  power law is illustrated by values 
o f  b obtained f rom a series o f  data sets ' 
collected f rom small plots (Table 1). T h e  
a value in these observations was close to 
i ,  so it was held constant  at 1 by constrain- 

TABLE 1. Taylor ' s  power  funct ion pa ramete r s  re- 
lating variance to mean  for populat ions  ofMeloidogg, ne 
incognita in small plot  studies. 

No. of 
Data obser- 
set # vations a* b r 2 

1 195 1.0 1.732 0.79 
2 101 1.0 1.728 0.94 
3 106 1.0 1.790 0.94 
4 54 1.0 1.883 0.98 
5 110 1.0 1.765 0.81 
6 237 1.0 1.740 0.78 
7 88 1.0 1.731 0.72 
8 74 1.0 1.860 0.91 

1.0 1.779 

* Pai:ameter forced to 1.0 in estimation process. 

ing the regression line th rough  the origin 
for the log t ransformed data. This  allows 
more  clear assessment o f  variability asso- 
ciated with the estimate of  b. 

Since both methods  discussed for esti- 
mat ing the variance are functions of  the 
populat ion mean,  predict ion o f  the vari- 
ance before  sampling involves prior  knowl- 
edge of  this mean.  Basic to the applied use 
of  nematode  damage functions is the re- 
qui rement  for  predict ing expected yield or 
yield loss for a crop. T h e  nematode  sam- 
pling process is under taken  to estimate this 
yield loss, and de terminat ion  of  the nema- 
tode populat ion density is merely an inter- 
mediate  step in this process. Fur ther ,  basic 
economics requires that  a part icular  man- 
agement  procedure  not  be invoked unless 
the  value o f  the loss to the nematodes  is 
greater  than the cost of  the managemen t  
procedure  (3). Hence,  in an applied sense, 
the use of  damage functions requires that  
the populat ion be sampled with sufficient 
intensity to measure  it with an acceptable 
probabili ty if  it is at a density which will 
invoke the managemen t  decision. This  
economic threshold populat ion density (P) 
can be de te rmined  by solving the damage 
funct ion y = m + (1 - m ) z  P - T  for P, 

e = ((log(y - m) 
- l o g ( 1  - m ) ) / l o g  z )  - T (i) 

T h e  variance associated with estimates at 
this populat ion density can be calculated 
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f rom Taylor 's  power law (s 2 = aP b) or  f rom 
the negative binomial if k is known. 

Karandinos (8) reder ived some pub- 
lished formulae  for the number  of  samples 
(n) required  to provide estimates of  the 
density o f  an aggregated  populat ion within 
a specified range of  the t rue mean  with a 
specified confidence level: 

n = Z~/2 + 02 

where  Z~/2 is the upper  ~ / 2  point  for the 
s tandard normal  variate, # is the popula- 
tion mean,  k is the dispersion parameter  
of  the negative binomial distribution, and 
D is hal f  the length o f  the acceptable con- 
fidence interval expressed as a propor t ion  
of  the mean.  This  estimate for n was de- 
rived f rom the general  formula  n - -  
(Z~/2/D)2"o'2/U2 where ~2 is the variance. 
T h e  s tandard variate (Z~/2) can be replaced 
by Student 's  t variate and 0 -2 substi tuted by 
its est imator a~ b (15) to yield an equat ion 
(16) for the number  of  samples necessary 
to predict  ~: 

n = (t~/2/D) 2. a. if(b- 2~ (ii) 

A characteristic of  an aggregated pop- 
ulation is that  the variance is greater  than 
the mean (2). From Taylor ' s  power law, 
when a = 1 and b = 1 the variance is equal 
to the mean and the populat ion distribu- 
t ion would be r andom or Poisson. When 
a = 1 and b > 1 the variance is greater  than 
the mean and will increase at a greater  rate 
than  the mean as the mean increases. Con- 
sequently, if the measured populat ion is 
actually lower than the economic thresh- 
old population,  it will have been measured 
with greater  precision than was required 
for the decision. I f  it is greater  than the 
economic threshold,  it will have been mea- 
sured with less than  the required  precision 
but  will invoke the managemen t  decision. 

It is useful to explore the contr ibutions 
of  the various components  o f  the sam- 
pling precision equat ion (ii) to the sampling 
in tens i ty  d e t e r m i n e d .  T h e  c o m p o n e n t  
ax (b-2) has a relatively small contr ibut ion 
(5 or  less) at in termediate  populat ion den- 
sities and when a = 1 and b -~ 2.0. T h e  
probabili ty component  (t~/2) varies with 
sample number ,  with the probabili ty level, 

and with the number  of  samples, but  is 
usually a round  2.0 so that  its squared com- 
ponent  approximates 4.0. T h e  acceptable 
deviation about  the populat ion estimate 
(D), however, may have a major  impact on 
the required sampling intensity. Thus,  if it 
is desired to estimate the populat ion den- 
sity within 10%, as perhaps in a populat ion 
or biomass study, the impact of  this com- 
ponent  squared is to increase the required 
sampling intensity 100-fold (1 /D 2 = 100). 
For crop loss prediction,  however,  it is de- 
sirable to predict the expected loss within 
a certain range (say 10%). Since the dam- 
age per nematode  decreases with increas- 
ing nematode  populat ion density (11) the 
populat ion interval associated with a 10% 
damage range reflects a value of  D much 
greater  than 10% in relation to the pop- 
ulation mean. Hence,  the impact of  the 
magni tude  o f  D is minimized by evaluating 
sampling intensity based upon an accept- 
able range in the damage prediction. 

Optimum sampling intensity: T h r o u g h  the 
outl ined logic, the number  of  samples re- 
quired to estimate a population density with 
a specified level of  precision will vary di- 
rectly with the density. Conversely, the 
precision associated with a populat ion es- 
t imate at a specified sampling intensity will 
decrease with increasing density. When 
sampling a field to de termine  the nema- 
tode populat ion density for management  
decisions, the populat ion density and its 
variance are not  known in advance. T h e  
min imum sampling intensity is that  num- 
ber of  samples (n) which would measure 
the populat ion with acceptable precision if 
the populat ion density were at the econom- 
ic threshold level (P). Thus,  f rom equations 
(i) and (ii): 

n = (t~/2/D)2-a .P(b-2) (iii) 

Since the opt imum sampling intensity de- 
pends upon the economic threshold pop- 
ulation, it is specific to the cost of  the man- 
agement  alternative and the nature  of  the 
damage function for the nematode  species. 
Thus,  the sampling intensity varies with 
the magni tude  of  the investment contem- 
plated. 

Relationship between confidence range of pre- 
diction and number of samples: For risk anal- 
ysis of  the management  decision, it is nec- 
essary to know the number  of  samples 
which will place the yield predict ion within 
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a specified interval. If  a management  de- 
cision is to be made at a predicted yield (9) 
(Fig. 1), the number  of  samples should be 
determined to place the yield prediction 
within a small interval around 9; for ex- 
ample, 9 -+ 10%. Projecting that interval 
from the y axis indicates that the popula- 
tion must be estimated in the range P~ to 
P2. The  probability associated with this es- 
timate will be a function of  the t~ value 
associated with the confidence bands on 
the damage function and the t~2 value in 
the equation yielding the number of  sam- 
ples required to estimate the population 
density within a certain range. The  prob- 
ability levels for the damage function bands 
and for the population estimate must be 
larger than required for the yield interval 
estimate, or solution of  the sampling in- 
tensity equation is impossible. 

The  upper bound of  the damage interval 
is projected onto the lower confidence band 
of  the damage function, while the lower 
bound of  the interval is projected onto the 
upper confidence band. This procedure 
may be verified by widening the damage 
interval, resulting in a corresponding in- 
crease in the population estimate interval. 
If  the damage interval bounds are pro- 
jected onto the opposite confidence bands, 
widening of  the damage interval decreases 
the population estimate interval. Note that 
in the extreme case, if absolute prediction 
of  the damage level is required and the 
damage function is known with perfection, 
a single line would be projected from the 
y-axis to the damage function and onto the 
x-axis requiring measurement of  the pop- 
ulation without deviation (D = 0). From 
equation (iii) this would give an infinite 
number of  samples. Projections from the 
y-axis are constrained by the damage func- 
tion. If  the upper bound of  the damage 
interval is too high to project onto the low- 
er confidence band of  the damage func- 
tion, the appropriate sampling intensity is 
determined from the lower bound projec- 
tion. Similarly, if the lower bound projec- 
tion is too low to intersect the upper con- 
fidence band, the appropriate sampling 
intensity is determined from the upper 
band projection. An approximation for the 
estimated projection of  the missing bound 
may be provided by balancing the popu- 
lation interval about the economic thresh- 
old population on a logarithmic scale, 

whereby log P2 = log P + (log P - log P0. 
If  the economic decision value (that crop 
value caused by the economic threshold 
population density) is less than the value 
attributed to the minimum yield (m), the 
economic threshold is infinite and sam- 
pling is unnecessary; the management op- 
tion is rejected since the investment cannot 
be recouped from yield improvement. 

It is possible to calculate Pl and P2 f rom 
y~ and Y2 (Fig. 1) as follows: 

y l = %  - t, ls~ 

9, = m + (1 - m)zP, -T 
for Pj > T ,  

else 9, = 1 

then, y~ = m + (1 - m)zP~ -T 
- t~lS 9 for Pl > T, 

else y~= 1 --t~lSf. 

Solving for P1: 

P, = ((log((% - m + t~sf)/  
(1 - m ) ) ) / l o g  z) - T 

for P~ > T, 

else P~ = 0. 

All terms in the latter expression are known 
except for 

S9 = Sy.x ~ / /1  ..~_ (.~__ZX 2P~)2 

where £ is the mean population density and 
n the number  of samples involved in der- 
ivation of  the damage function. Since P~ is 
embedded in this term, a direct solution 
for P, is impossible and an iterative ap- 
proach is used. Initially P is substituted for 
P~ and the equation is solved for P,. The 
new value of  P~ is substituted and the cal- 
culation repeated until the difference be- 
tween repeated values of  P~ approaches 
zero. A similar process can be used to cal- 
culate P~. 

The  values obtained for P~ and P2 are 
used to generate D = (P2 - P,) /P,  that is 
a density range expressed as a proportion 
of the mean. By substituting the value of  
D into equation (iii), the number  of nema- 
tode density measurements necessary to es- 
tablish the damage prediction within the 
interval 9 -+ 10% is derived. The  proba- 
bility associated with this interval is a mul- 
tiplicative function of the confidence level 



250 Journal of Nematology, Volume 16, No. 3, July 1984 

TABLE 2. Number of samples necessary to predict 
specified economic decision intervals, with a proba- 
bility of  0.90 of  the prediction falling within the 
interval, for Taylor's population parameters 
a = 1.0, b = 1.779, and the damage function y = 
0.56 + 0.44 x 0.997 (~-=°). Potential crop value = 
$100. 

Management Number of 
cost ($) % interval samples 

10 0.0 4 
20 0.0 5 
30 0.0 5 
10 5.0 3 
20 5.0 4 
30 5.0 4 
10 10.0 3 
20 10.0 3 
3 0  10.0 3 

D P 
I 0  - 7 ~ .0  

8 1,6 - ~ 0 . 8  

~.  1.4 

6 0 .6  
1,2 

8 4 i.o lo.4 

L.IJ m X8 
2 D 4 0 . 2  

0 I I I I 3 .4  J o  
50 6 0  70  80  90  I 0 0  

C O N F I D E N C E  BAND P R O B A B I L I T Y  ( I - c ~ 1 ) %  

FIG. 2. Influence of damage function confidence 
band probability levels on the number of  samples (N) 
necessary to predict an economic decision interval of 
fixed size, the associated probability (P) of  the nema- 
tode density confidence interval, and the proportional 
nematode density interval (D) being identified. 

associated with the damage function (1 - 
on) and that associated with calculation of  
the number  of  samples (1 - 0e2). 

The  t~2 value used in the probability 
level calculation is a function of the num- 
ber  of  samples, which is not yet known. 
Once again, an iterative process may be 
used: 
(1) reformulate equation (iii) to predict 

I3 = V/(t,22.a • P(b-2))/n; 
(2) solve this equation repeatedly for in- 

creasing values of n from n =^1; 
(3) when the difference betweeri D and D 

is at a minimum, the appropriate num- 
ber of  samples has been determined. 

DISCUSSION 

The  rationale developed here provides 
the basis for a sampling decision model in- 
corporating the variance of  the sample es- 
timate and the variability associated with 
the damage function. If  the predicted crop 
loss is less than the economic decision in- 
terval, management is unnecessary; if it is 
above the economic decision interval, man- 
agement is justified. If  the predicted crop 
loss is within the decision interval, a sub- 
jective decision must be made based upon 
the grower's economic status or risk aver- 
sion/risk acceptance level. The  bound- 
aries of  the economic decision interval are 
specified in the management decision pro- 
cess. It is possible to calculate the number  
of  samples necessary to provide a specified 
range of  an economic decision value at a 

known probability level, provided that pa- 
rameters of  the damage function and 
nematode distribution are known (Table 
2). The  required number of  samples de- 
creases as the economic decision value ap- 
proaches minimum yield. Here the pre- 
dictive popula t ion  interval  is greatest ,  
decreasing the required sampling intensi- 
ty. 

The  following examples are included to 
illustrate the dynamic influence and inter- 
dependent  nature of  the parameters of  the 
population distribution and of  the damage 
function in determining sampling intensity 
and predictive precision relative to eco- 
nomic thresholds and decision values. The  
probability (P) associated with the econom- 
ic decision interval increases as confidence 
bands on the damage function are widened 
by raising the associated probability level. 
Since the effect is to widen the propor- 
tional predictive population interval (D), 
the economic decision interval can be de- 
termined with fewer soil samples (Fig. 2). 
T he  n u m b e r  of  samples necessary to 
achieve a specified interval about an eco- 
nomic decision value is influenced by the 
magnitude of  the economic decision value 
because the slope of  the damage function 
is variable (Fig. 3). The influence of  Tay- 
lor's b value (or other dispersion parame- 
ter) is to increase the number of  samples 
for a required economic decision interval 
as aggregation of  the population increases 
(Fig. 3). 

As the complexities of nematode soil 
sampling for management decision pur- 
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FIG. 3. Influence ofTaylor ' s  b value on the num- 
ber of samples necessary to measure a 10% economic 
decision interval for economic decision values 23, 46, 
and 69% of the potential value loss due to nematodes. 

poses are explored, a theoretical basis for 
determining sampling intensity and the as- 
sociated precision is evolving. It is empha- 
sized that data in this paper are used pri- 
marily to provide examples; however, they 
originate from field studies by the author. 
The  parameters of  Taylor's power func- 
tion were derived from small-plot studies 
and are expected to be larger in field-scale 
investigations. The  concepts presented  
here provide a basis for computer-deliv- 
ered predictions of damage and for analysis 
of  the risk associated with their acceptance. 
They do not replace or' detract from the 
already well-established principles for sam- 
pling for nematodes and other soil organ- 
isms (1,5), but merely provide resolution 
to those principles. It is still necessary to 
stratify fields according to edaphic and cul- 
tural conditions, but fur ther  necessary to 
determine damage function and popula- 
tion distribution parameters for the con- 
ditions o f  individual strata. The  recom- 
mended maximum stratum size of 5-10 
acres should probably remain unchanged,  
and distribution parameters should be 
measured accordingly. 
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