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INTRODUCTION 

Life history studies usually include the determination or estimation of recruitment 

(actual number and/or distribution function), duration, and survivorship for each life 

stage. For single or discrete generation cases, many methods for calculating these 

values have been described (AsHFORD et al., 1970; BELLOWS and BIRLEY, 1981; BIRLEY, 

1977; BIRLEY, 1979; HOGO and NORDHEIM, 1983; KIRITANI and NAKASUJI, 1967; 

KOBAYASHI, 1968; MANLY, 1974a; MANLY, 1974b; MANLY, 1976; MANLY, 1977; MILLS, 

1981a; MmLS, 1981b; RICHARDS et al., 1960; SAWYER and HAYNES, 1984). In studies 

of above-ground, macroscopic, caged populations, the same individuals can be observed 

over time. In some cases, individuals can be observed repeatedly as they develop through- 

out their life cycle. Sampling bias is not introduced. For many soil organisms and 

microorganisms, destructive sampling is necessary. Population assessment techniques 

are not 100% efficient. Several individuals should be present in each sampling unit to 

ensure a reasonable probability of recovery. Population assessment efficiency varies 

with each life stage. Stage-specific assessment efficiencies can be estimated and used to 

adjust data. Data sets consisting of means of adjusted counts obtained through destruc- 

tive sampling are more variable than those based on direct observations of individual 

development. Additional variation occurs in multiple generation data sets due to 

inherent genetic and microhabitat-induced differences in fecundity rate and length of the 

reproductive period. Estimation of recruitment, stage duration, or survivorship from such 

variable data which may not have generations sufficiently discrete to separate the same 

stage in successive generations, is diffiicult. This paper presents a basic age-structured, 

distributed delay population model and develops a parameter estimation algorithm. 

The algorithm is tested on a single generation data set of an insect pest (the simple case) 

(BELLOWS and BIRLEY, 198 I) and applied to a plant parasitic nematode data set extended 

beyond the first generation (SCHNEIDER and FERRIS, 1987). 
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POPULATION MODEL STRUCTURE 

The general structure of the population model is 

N i a - ~  N i , t - l  + a c N i - l , , - 1 - - b N i , t - 1  (1) 

where Ni, t  is the number  of individuals in stage i at t ime t, a is the proportion of indi- 

viduals entering stage i from the previous stage, c is the proportion of individuals surviving 

the passage from stage i-1 to stage i, and b is the proportion of individuals maturing from 

stage i to stage i +  1. In deterministic models in which all individuals of the same age 

move on to the next stage once the appropriate length of t ime (chronological or 

physiological) has passed, coefficients a and b are either 0 or 1. A zero indicates enough 

time has not passed and the probabili ty of an individual moving to the next stage is zero. 

A one indicates maturi ty has been reached, and the probabili ty of all individuals in that 

age cohort moving to the next stage is one. 

In  LESLIE matrix format, the organism's life cycle is divided into substages with 

a length equal to the length of the shortest stage. The  population is advanced at t ime 

steps equal to this substage length. At each time step, all individuals which survive 

a given substage are advanced to the next substage. 

Equation 1 can be written: 

N i.t ~- N i,t-1 + 1 c N i - l , t - 1 - -  1 N i,t-1 

N i , t~ - cN i -1 ,  t-1 

The a and b coefficients are always 1. 

(2) 
(3) 

The coefficient c corresponds to ( 1 -  q) in life table notation (LESLIE, 1945; LESLIE, 1948). 

In  a distributed delay model, movement  of an individual from one stage to the next is not 

only based on the mean length of t ime in the stage, but also the variability among indi- 

viduals associated with that mean. Some individuals mature faster than the mean, 

most at about  the mean, and some slower than the mean (AsHFORD et al., 1970; CURRY 

et al., 1978; MANETSCH, 1976; SHARPE et al., 1977; WAGNER et al., 1984). The a and b 

coefficients of equation 1 are calculated from a probabili ty distribution based on the 

mean and standard deviation or are assigned a predetermined probability. 

Survivorship can follow one of three general patterns; 1) high mortali ty at the be- 

ginning of the stage, 2) mortali ty evenly distributed across the stage, or 3) high mortality 

at the end of the stage (PEARL and MINER, 1935). A function describing the survivorShip 

pattern characteristic of the organism being modeled can be chosen and implemented 

in equation 1. The form of the equation presented here reflects the third pattern, high 

mortali ty at the end of the stage. I f  a general function that  can take on all three char- 

acteristic patterns is needed, then the WEIBULL function can be used (HoGo and 

NORDHEIM, 1983; PINDER et al., 1978; WAGNER et al., 1984). 

Developmental  rates in ectothermic organisms are dependent on temperature and 

concentrations of developmental enzymes (CURRY et al., 1978; SHARPE et al., 1977). 

Enzyme concentration can be assumed to be symmetrically distributed about  some mean 

within a population of individuals. The  symmetrical  distribution of enzyme eoncen- 
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tration gives rise to symmetrically distributed developmental rates within the population. 

When developmental rates are converted to developmental time (Time= 1~rate), the 

resulting distribution is asymmetric with a drawn out right-hand tail. This suggests 

that the choice of a probability function to govern maturation from one stage to the next 

should be an asymmetric, positively-skewed function. The function chosen for the 

model presented here is the ERLANG distribution. This function was chosen because 

it is positively skewed, it is completely defined by only two parameters, the mean and 

variance, it conserves flow, and it is relatively easily implemented on a computer 

(AsHI~ORD et al., 1970; MANETSCH, 1976). The equation for the ERLANG function is: 

f (t) ~- (~/k)-k(t)*-I exp[--kt/~]/(k-- 1 ) ! 

where ~ is the mean, s 2 is the variance, k =~2/s2, and t is time (chronological or physiologi- 

cal). When k = l ,  this is the exponential distribution. As k approaches infinity, the 

ERLANG distribution approaches a normal distribution (MAN~TSCH, 1976). 

The conceptual population model (Fig. 1) shows the progression of individuals 

through the life stages from egg to adult, with the probability of maturing to the pext 

stage described by the ERLANa function. Each life stage is divided into k substages. 

A stability condition to insure flow is conserved requires that the time step (D T) used to 

calculate movement from one substage to the next for each stage be chosen such that 

DT<~/2k .  Since ~/k is the length of time in each substage of a stage, this restriction 

insures that an individual may move only to the next substage during a single iteration. 

The parameters x and k will vary between stages, resulting in a different maximum 

allowable D T for each stage. The smallest of the allowable stage-specific time steps 

will meet the stability requirement for all other stages and is chosen as the time step to be 

used for the whole model. Mortality in this model is assumed to be distributed uniformly 

across the stage, and is implemented by multiplying the k th root of total stage survivorship 

by the number of individuals leaving each substage. This could be changed to ac- 

commodate other mortality patterns. 

Given a mean, variance, and survivorship for each stage, a fecundity rate for the 

adult stage, and the starting population age structure, the progress of individuals through 

the life cycle is updated at time intervals dictated by the time step. Updating occurs in 

reverse order, beginning with the oldest individuals and proceeding to the youngest, to 

prevent instantaneous graduation. Instantaneous graduation occurs when individuals 

mature from stage i to i +  1 during the updating of stage i, and are then immediately 

I I ,  , i l l  l ! a I I 

EGG STAGE ,I STAGE 2 ADULT 

Fig. 1. Conceptual model of the progression of individuals through their life cycl e . 
The broken lines indicate the k substages within a stage. 
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updated again during the updating of stage i +  1. Adults are updated first as dictated by 

the mean and variance for adults and the time step. Next, egg production by the adults 

is calculated. All juvenile stages are updated based on their means and variances. 

Finally, the egg stage is updated, and the new eggs produced during this time interval 

are put  into the first egg substage. As individuals pass from one substage to the next, 

they are multiplied by the sub-stage survivorship. A flowchart of this program is given 

(Fig. 2). 

ESTIMATION OF PARAMETERS 

The general approach to parameter estimation is to generate predicted population 

values using a particular combination of parameters and compare the predicted to 

observed data. A weighted least squares (LSQ) is used to evaluate the goodness-of-fit 

t n 
ZSiQ'=k~=l j~=l (OJ'k--PJ'h)2/O'i'k ( 4 )  

where i represents a particular parameter combination, n is the number of stages, t is the 

number of time intervals, 0 is the observed population level, and P is the predicted 

population level. The parameter combination which minimizes the least squares value 

is chosen as the best estimate of the parameters 

LSQb,~t=MIN (LSQ.j, LSQ2 ...). (5) 

The algorithm is best suited to data sets in which the initial population is a uniform age 

cohort of first stage individuals, observations have been made at time intervals shorter 

than the expected length of the shortest stage, and the fecundity rate is known. Even 

with these conditions met, the number of parameters to be estimated can be a problem. 

If  four values are tested for each of three parameters for four stages, the total number  of 

combinations is 16,777,216 (412). I f a  time step of 1 degree-day (a physiological measure 

of time denoted DD) is chosen for a data set of 500 DD, this results in 8,388,608,000 

iterations of the simulator. Even with a computer, this can be time consuming. 

A stepwise procedure was developed to alleviate this problem (Fig. 3). I f  the data 

set contains more than one generation, a three-step process is used. The first generation 

data are used to estimate a mean developmental time for each stage, then the associated 

stage-specific variance, and survivorship. Finally, the full data set is used to refine all 

estimates. 

In the initial parameter estimation phase, fecundity is set to zero. Any parameter 

values which have been determined experimentally are set. The  stage-specific standard 

deviation is initialized at 0.5 times the mean, allowing coarse resolution in initial parameter 

estimation. A range of values is chosen to bracket the probable mean duration of the 

stage. Timing of the observed and predicted population peaks for the first stage are 

compared until a best estimate for the first stage mean is obtained based on the smallest 

least squares value. The value for the first stage mean is set, and the whole procedure is 
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Fig, 3. Flowchart os a parameter estimation procedure. 

repeated in a stepwise fashion until the mean duration of each stage has been estimated 

for all stages. 

In the second step of parameter estimation, a range of values is chosen to breackt 

the probable standard deviation and survivorship of the first stage. With the best fit 

mean duration for the first stage, a predicted data set is generated for each standard 

deviation and survivorship combination. The parameter values minimizing the least 

squares value are selected. Fine resolution is obtained by narrowing the range of para- 

meter values. Minor modification of the mean stage duration estimates may improve 

the fit. The  procedure is repeated stepwise for all remaining stages. 
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In the third step, fecundity is set to its known value. Estimated parameter values 

from the first generation are used to simulate multiple generations. Observed and 

predicted values are compared as before. I f  the fit is not adequate, the parameter values 

are not verified, and further fine-tuning of the parameter estimates may be necessary. 

This might include testing values outside the ranges used previously. Further experi- 

mentation may be indicated if large variation in the data hinders the determination of 

best parameter estimates. In the case of large discrepancies between the observed and 

predicted values, a restructuring of the conceptual population model may be required. 

I f  the fit is satisfactory, the parameter values are verified, and the model and estimated 

parameters are ready for validation against an independent data set. 

APPLICATION OF THE PARAMETER ESTIMATION PROCEDURE 

A life table for the insect Callosobruchus chinensis (L) (BELLOWS and BIRLtgY, 1981) 

contains population counts for an egg stage, four juvenile stages, a pupal stage, and an 

adults stage over 26 days. Only one adult stage, the pre-emergent adults, was used for 

comparison. This is a single generation data set and no reproduction occurred. The 

first two steps of the parameter estimation procedure, coarse-fitting and fine-tuning using 

first generation data, were applied to this data set. The egg population was initialized 

as a uniform age cohort into the first egg substage. Developmental times and survivorship 

estimates by BELLOWS and BIRLEY (1981) were compared with those obtained by the 

procedure described here. 

The technique was also applied to an ectoparasitic plant nematode, Paratrichodorus 

minor (COLBRAN, 1956) SIDDIQI, 1974 (SCHNEIDER and FERRIS, 1987). The data set 

contained observations, corrected for extraction efficiency, for four juvenile stages and an 

adult stage over 378 degree-days using a basal threshold of 10C (DD10). This data set 

extends beyond the first generation. Some parameters had been determined experimen- 

tally; the fecundity rate was 0.784 progeny/female/DD~0 and the length of the egg stage 

was 53=k 7.4 DD10. All three steps of the parameter estimation procedure (coarse-fitting 

of the stage mean durations using first generation data, fine-tuning of the stage-specific 

standard deviations and survivorships from the first generation data, and extrapolation 

using the fecundity rate to the full data set) were applied to the data. The first stage 

juveniles were initialized as a uniform age cohort into the first substage. Comparisons 

between observed and predicted data were made for the first generation estimates, and, 

after fine tuning, for the whole data set. 

R.ESULTS 

C. chinensis Data Set 

Algorithm determined parameter values (Table 1) allowed population predictions 

close to observed data for the egg, first larval, and pupal stages (Fig. 4a, 4b, 4c). Pre- 
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Table 1. Estimates of the mean developmental time in days and survivorship for 
Callosobrichus chinensis using data from B~LLOWS and BmL~Y (1981). 

Length of Stage (days) Survivorship (stage total) 
Stage BELLOWS and BIRLEY a This paper b BELLOWS and BIRLEY This paper 

Egg 3.16 4.10 1.00 0.98 
1st larvae 2.13 2.62 1.00 0.93 
2nd larvae 2.07 2.30 0.99 0.98 
3rd larvae 2.06 1.95 1.00 1.00 
4th larvae 4.43 4.95 1.00 1.00 
Pupae 3.17 3.55 0.95 0.96 
Adults in pea 2. I 1 2.60 1.00 1.00 

a Using discrete GAUSSIAI'I distribution (BELLOWS and BIRLEY, 1981) 
b Using an ERLANG probability distribution 

dicted populat ions were slightly higher than  observed for the second larval stage (Fig. 4c), 

and slightly lower than  observed for the third and fourth stage larvae and the adults 

(Fig. 4d, 4e, 4g). 

Estimates o f  developmental  times calculated from the a lgor i thm described here were 

generally higher than those estimates by BELLOWS and  BmLEY (1981) (Table 1). The  

dura t ion of  the stage was estimated to be 30%, 23%,  11%, 12%, 12% and 23% longer 

for the egg, first larval, second larval, fourth larval, pupal ,  and adul t  stages respectively. 

The  third  larval stage was estimated to be 5% shorter. While stage length was generally 

estimated to be longer, total stage survivorship was estimated to be lower in the first three 

life stages (Table 1). 

P.  minor Data  Set 

Estimates for stage mean  durat ion,  s tandard  deviation, and survivorship following 

the coarse-fit and fine-tuning steps for the first generat ion (Table 2) provided m i n i m u m  

deviation between observed and  predicted populat ions (Fig. 5). W h e n  parameter  values 

were used to predict  beyond the first generation, predicted second generat ion first stage 

juveniles entered the system too early. T he  model  was restructured to include a pre-  

ovipositional adult  period with a fixed length of  79 DD10 (SCHNEIDER and  FERRIS, 1987). 

Table 2. Estimates of Parameter Values for P. minor. 

Mean (DD10) S.D. ( D D 1 0 )  Survivorship (total stage) 
Stage Original Modified Original Modified Original Modified 

Egg 53 53 7.4 7.4 1.00 1.00 
Jt 22 14 6.7 4.2 1.00 0.90 
Js 44 50 4.4 7.5 1.00 0.87 
J3 47 45 4.7 6.7 1.00 0.90 
J4 14 8 1.4 3.2 1.00 0.90 
Pre-Adult - -  79 - -  23.7 - -  1.00 
Adult 78 100 39.0 70.0 1.00 0.50 
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Values of  the stage mean durations, standard deviations, and survivorships, were further 

refined using the whole data set, ultimately yielding modified values (Table 2). Pre- 

dicted first stage juvenile populations are higher than observed from 220-320 DD10 and 
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lower than the observed from 320-378 DD10 (Fig. 6a). Predicted second stage juvenile 

populations are not systematically higher or lower than observed over any time interval 

(Fig. 6b). Predicted populations of third stage juveniles are lower than observed from 

120-320 DD10 (Fig. 6c). Predicted populations of fourth stage juveniles are higher than 

observed from 330-378 DD10 (Fig. 6a). Predicted adult populations are lower than 

observed from 100-190 DD10 and higher than observed from 190-378 DD10 (Fig. 6e). 

DISCUSSION 

The method of life table parameter estimation proposed in this paper worked well in 

determining parameter values for a single generation insect data set. The  values obtained 

were not the same as those estimated previously (BELLOWS and BIRLEY, 1981) but were in 

general agreement. The differences which occurred are probably due to the choice of 

different probability functions in the population model. Both functions can be used to 

represent the observed data satisfactorily. 

There was more variation between observed and predicted values in the multiple 

generation nematode data set. This is to be expected since cumulative error is a function 

of the number of stages and the length of time simulated. Variation in extraction 

efficiencies can lead to errors in the estimation of population numbers (SCHNEIDER and 

FERRIS, 1987), and hence estimation of life table parameters. Inaccuracies in the deter- 

mination of any preset value, such as fecundity, will also affect the parameter estimates. 

The initial age distribution of the population is another possible source of error. 

A population can be considered as a uniform age cohort in the first substage of a stage, for 

example, right after a synchronous egg hatch. The initial population might also be a 

uniform age cohort in the last substage of a stage, as before a synchronous egg hatch. 

The distribution of individuals across all substages according to a predetermined age 

distribution would be another option. The most valid choice may vary for different data 

sets. 

A disadvantage of this parameter estimation procedure is that it does not estimate 

both fecundity and stage survivorship. These parameters are interrelated and over- 

estimation of fecundity can be offset by underestimating survivorship. Underestimating 

fecundity is compensated for by overestimating survivorship until survivorship is 100% 

for all stages. However, if  the stage-specific survivorships can be determined experimen- 

tally, these can be set as fixed values and the fecundity rate estimated by the parameter 

estimation procedure. 

The parameter estimation algorithm presented here uses a population model with 

an ERLANG probability distribution to choose values for stage-specific mean development 

times, the standard deviations associated with the development times, and stage specific 

survivorships. The algorithm requires a data set containing stage frequencies over time, 

ranges for the values to be estimated, and fecundity rate, if the data set extends beyond 

the first generation. I r a  large number of parameters are to be estimated, a single optimal 



279 

solution may  not  be found. The  mathemat ica l ly  opt imal  solution may  not  be the most 

biologically reasonable choice. In  de te rmin ing  the acceptance or rejection of any  

paramete r  based solely on mathemat ica l  best fit, biological common  sense must  be used. 

SUMMARY 

An algor i thm for es t imat ing mean  stage durat ions,  the s tandard  deviations associated 

with the means,  and  stage-specific survivorships from stage frequency da ta  is presented. 

The  a lgor i thm is based on an  age-structured, dis t r ibuted delay s imulat ion model which 

uses ERLANG distr ibutions to determine the probabi l i ty  of ma tu r i ty  for individuals  in  each 

stage. I f  the da ta  set extends beyond the first generat ion,  the a lgor i thm requires a 

fecundity rate, as well as stage frequencies, as input .  Goodness-of-fit was measured 

using a weighted least squares calculat ion summed over all observed stages and  all sampl- 

ing dates. 
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