Rev 07/02/2024
Review general characteristics of the genus Meloidogyne.
Sample perineal patterns of Meloidogyne javanica. The double lateral lines are characteristic.
Body shapes of immature and mature females.
Males of Meloidogyne javanica are vermiform and 1 mm to 1.5 mm long.
The body rotates through a characteristic half twist along its length.
There is no bursa.
Males probably do not feed and usually have no reproductive function. They may develop in larger numbers under stressful conditions.
Reported median body size for this species (Length mm; width micrometers; weight micrograms) - Click:
Originally described from Java, Indonesia. Occurs widely in warm regions of the world.
Predominant root-knot species in central Africa.
Species is often dominant at higher altitudes in warm climates..
C-rated pest in California Nematode Pest Rating System. (Scheck, 2022).
Meloidogyne javanica has a very broad host range with close to 800 host plants recorded. It is one of the most serious pests of crops in central Africa and is considered second only to M. incognita in importance worldwide, being widespread in sub-tropical and tropical regions (Sasser et al., 1985; Scheck, 2022)..
In California, M. javanica is most often associated with beet, citrus, tomato, olive, potato, grape, and peach (Chitambar et al., 2018).
Sedentary endoparasite.
Feeding site establishment and development typical of genus.
Sedentary endoparasite of plant roots.
Type Host: sugarcane (Saccharum officinarum).
Very broad host range; over 770 species of host plants.
Reproduction by mitotic parthenogenesis (see life cycle details for the genus).
Ecophysiological Parameters:
Chromosome number 2n=42-48. The large number, and variability of chromosome number, are typical of species reproducing by obligate mitotic parthenogenesis. (Subbotin et al., 2021; Triantaphyllou, 1985).
Minimum, optimum, and maximum temperatures recorded for life processes of M. javanica
This species is the most serious pest of crops in central Africa (Daulton & Curtis, 1964).
Interactions between M. javanica and other pathogens can occur.
Like other root-knot nematodes, M. javanica incites galls on the root systems of host plants. Damage to the root systems impairs the ability of the plant to take up water and nutrients from the soil. The feeding site is a group of cells known as "giant-cells", created when the nematode injects secretory proteins that stimulate changes within the parasitized cells. The feeding-site cells are multinucleate duew to nuclear division occurring without cell wall formation, known as karyokinesis without cytokinesis,. Giant-cells act as nutrient sinks, supplying large amounts of resources to the nematode. The production of plant growth regulators control development and function of the giant cells (Scheck, 2022).
Soil fumigants in higher value crops.
Crop rotation can be effective, but may be difficult to find non-hosts of economic value.
Hot water dips of planting material (for example, potatoes at 46 C for 2 hours).
There is less plant resistance to attack by this species than for M. incognita.
In tobacco fields in North Carolina, the predominant Meloidogyne species was M. incognita until introduction of cultivars with resistance to that species. Subsequently there has been a shift to M. javanica and M. arenaria, which now predominate in tobacco fields (and for which resistance is not available).
The Mi gene of tomato confers resistance to several species of root-knot nematode, including M. javanica, M. incognita and M. arenaria.
Cultivars of carrot derived from Brasilia carry single gene resistance to M. javanica. The gene does not confer resistance to M. incognita; that had to be provided from other sources.
Host Plant Resistance, Non-hosts and Crop Rotation alternatives:
H. Ferris
Scheck, H.J. 2022. California Pest Rating Proposal for Meloidogyne javanica (Treub, 1885) Chitwood, 1949. CDFA, California, USA
Subbotin, S.A. Palomares-Rius, J.E., Castillo, P. 2021. Systematics of Root-knot Nematodes (Nematoda: Meloidogynidae). Nematology Monographs and Perspectives Vol 14: D.J. Hunt and R.N. Perry (eds) Brill, Leiden, The Netherlands 857p.
Triantaphyllou, A.C. 1985. Gametogenesis and the chromosomes of Meloidogune nataliei: not typical of other root-knot nematodes. J. Nematology 17:1-5.
Triantaphyllou, A.C. 1985. Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In Sasser, J.N. & Carter, C.C. (eds) An Advanced Treatiswe on Meloidogyne.Vol 1. Biology and Control.N.C. State Universty Graphics, Raleigh, N.C. USA.