Robbea

 

Contents

 

Rev: 03/26/2025

  Classification Biology and Ecology
Morphology and Anatomy Life Cycle
Return to Robbea Menu Ecosystem Functions and Services
Distribution Management
Return to Desmodoridae Menu Feeding  References
    Go to Nemaplex Main Menu   Go to Dictionary of Terminology

Classification:

Chromadorea
  Chromadoria
   Desmodorida
Desmodorina
             Deamodoroidea
                Desmodoridae
       Stilbonematinae

  •         Robbea Gerlach, 1956
  •      
    Type species of the genus: Robbea caelestis Gerlach, 1956

        Synonyms:
         

     

    Back to Top

    Morphology and Anatomy:

    Species of Robbea are difficult to distinguish using single morphological characters. Scharhauser et al., 2025 used a principal component analysis (PCA), based on 14 morphological characters, to separate the species from each other.

     

    Females:

    • Didelphic, ovaries antidromously reflexed, both genital branches to the left of intestine.

    • Vulva with conspicuous sclerotization. 

     

     


    Males:
     
    • Monorchic,

    • Spicules curved, cephalate, capitulum heart-shaped under LM

    • Gubernaculum with paired dorsocaudally directed plate-shaped apophysis with reinforced margin;

    • Tail cylindro-conical

    Ref: Armenteros et al., 2014; Scharhauser et al., 2025


    Body size range for the species of this genus in the database - Click:
    Back to Top

    Distribution:

    Marine nematodes in tidal sands and coral reefs.

     
    Back to Top

    Feeding:

    Nematodes in the subfamily Stilbonematinae of the Desmodoridae are associated with, and feed on,  dense coatings of sulfur-oxidizing chemoautotrophic gammaproteobacteria with which they are apparently obligately symbiotic. The nematodes feed on the bacterial symbionts.

     

    Back to Top

    Biology and Ecology:

    Fe-Br inclusions occur inside the the glandular sense organs (GSO's).  So far (2025), Fe-Br inclusions have only been found in the genus Robbea. The GSOs connect to the exterior of the nematode body via hollow setae. The symbiotic associations between bacteria and nematodes are species-specific couplings that are initiated and maintained by secretions of the neurosecretory cells of the GSOs  (Bulgheresi et al., 2006; Scharhauser et al., 2025).

    The nematodes migrate through the chemocline in the sediments of the intertidal zone to provide their ectosymbionts with both oxygen and sulfide. Essentially, the nematodes farm their bacterial associates by migrating to ocean sediments rich in hydrogen sulfide (Bulgheresi Reference Bulgheresi2011; Murfin et al. Reference Murfin, Dillman, Foster, Bulgheresi, Slatko, Sternberg and Goodrich-Blair2012).. The chemoautotrophic gammaproteobacteria derive energy by oxidizing sulfides.  In turn, the nematodes feed on the bacterial symbionts as their source of nutrients and energy (Ott and Novak 1989, Ott et al. 1991; Scharhauser et al., 2025).

    Back to Top

    Life Cycle:

     
     
    For Ecophysiological Parameters for this genus, click 
    Back to Top

    Ecosystem Functions and Services:

     

    Back to Top

    Management:

     
    Back to Top

    References:

    Armenteros, M., Ruiz-Abierno, A., Decraemer, W. 2014. Taxonomy of Stilbonematinae (Nematoda: Desmodoridae): description of two new and three known species and phylogenetic relationships within the family. Zool; J. of the Linnean Soc. 171-1-21.

    Bulgheresi S, Schabussova I, Chen T et al. 2006. A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates symbiont acquisition by a marine nematode. Applied and Environmental Microbiology 72:2950-2956. https://doi.org/10.1128/AEM.72.4.2950-2956. 2006

    Bulgheresi, S. 2011. Calling the roll on Laxus oneistus immune defense molecules. Symbiosis 55, 127-135.

    Chitwood, B.G. 1936. Some marine nematodes from North Carolina. Proc. Helmint. Soc. Wash. 3: 1-16.

    Gerlach S.A. 1956. Die Nematodenbesiedlung des tropischen Brandungsstrandes von Pernambuco: Brasilianische Meeres-Nematoden, II. Kieler Meeresforschungen 12:202-218.

    Murfin, K. E., DillmanA. R., FosterJ. M., BulgheresiS., SlatkoB. E., SternbergP. W. and Goodrich-BlairH. 2012. Nematode-bacterium symbioses - cooperation and conflict revealed in the omics  age. Biological Bulletin 223, 85-102.

    Ott, J, Novak R. 1989. Living at an interface: meiofauna at the oxygen/sulfide boundary of marine sediments. In: Tyler PA (ed.), In Reproduction, Genetics and Distribution of Marine Organisms. Fredenborg: Olsen & Olsen, 415-422.

    Ott, J.A., Novak R,, Schiemer, F. et al. 1991. Tackling the sulfde gradient: a novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. Marine Ecology 12:261-279. htps://doi. org/10.1111/j.1439-0485.1991.tb00258.x

    Scharhauser, F. et al. 2025.  Revision of the genus Robbea (Stilbonematinae: Desmodoridae), worldwide abundant marine nematodes with chromophoric Fe-Br inclusions and the description of a new stilbonematine genus, Zoological Journal of the Linnean Society, 203, Issue 1, January 2025, zlae005, https://doi.org/10.1093/zoolinnean/zlae005

     

    Back to Top

    Copyright © 1999 by Howard Ferris.
    Revised: March 26, 2025.