Meloidogyne enterolobii

 

Contents

 

Rev 12/16/2024

Pacara Earpod Tree Root-knot Nematode; Guava Root-knot Nematode Classification Hosts
Morphology and Anatomy Life Cycle
Return to Meloidogyne Menu Economic Importance Damage
Distribution Management
Return to Meloidogynidae Menu Feeding  References
    Go to Nemaplex Main Menu   Go to Dictionary of Terminology

Classification:

      Chromadorea
       Rhabditida
       Tylenchina
        Tylenchoidea
          Meloidogynidae
           Meloidogyninae

           Meloidogyne enterolobii Yang and Eisenback, 1983
Synonym Meloidogyne mayaguensis Rammah and Hirschmann, 1988

Holo- and paratypes of Meloidogyne mayaguensis Rammah & Hirschmann, 1988 and M. enterolobii Yang & Eisenback, 1983 were compared morphometrically and morphologically. All female, male and second-stage juvenile morphometrical and morphological characters are identical for the two species. Meloidogyne mayaguensis is confirmed as a junior synonym for M. enterolobii (Karssen et al., 2012).

Review general characteristics of the genus Meloidogyne.

Back to Top

Morphology and Anatomy:

 

  Female: 
  Mature Female:  Body morphology.
Perineal pattern
   
Male:  Anterior Male:  Posterior - spicules and gubernaculum, no caudal alae.

Reported median body size for this species (Length mm; width micrometers; weight micrograms) - Click:

Second-stage juvenile

Back to Top

Distribution:

Primarily tropical areas of the world, including Brazil,  Mexico, Malawi,  South Africa, and West Africa (Senegal, Ivory Coast and Burkina Faso). China, Vietnam, Florida, Central and South America, France, and Switzerland. Widely distributed in the Caribbean islands, including Cuba, Puerto Rico, Tobago, Trinidad, Guadeloupe and Martinique. According to Collett et al (2021), by April 2020 the nematode had been reported from all continents except Australia and Antarctica.  Recently detected in Australia.

Reported from cotton and soybean in the United States (Ye et al., 2013)

M. enterolobii was first described from roots of pacara earpod trees (Enterolobium contortisiliquum) on Hainan Island in China. A few years after the description of M. enterolobii, M. mayaguensis was described from  eggplant in Puerto Rico.  Morphometric and molecular analysesd support the designation of M. mayaguensis as a junior synonym of M. enterolobii (Elling, 2013; Karssen, 2012).

Regulatory agencies of several countries have designated M. enterolobii as a quarantine pathogen (Elling, 2013).


Back to Top

Economic Importance:

Populations of Meloidogyne enterolobii are able to overcome resistance of the Mi gene in tomato cv. Rossol, soybean cv. Forrest, and sweet potato are reported in West Africa. Further, it is reported as a significant problem for tomato production due to its high virulence and ability to overcome resistance provided by the Mi-1 gene (Carneiro et al., 2007).

Damages coffee  in Cuba where it also reproduces on tomatoes with the Mi resistance gene.

It is considered the most important problem in guava production in Brazil  where it infests over 5,000 ha or about a third of the production area (Elling, 2013).

 

Back to Top

Feeding:

Sedentary endoparasite.

Feeding site establishment and development typical of genus.

Back to Top

Hosts:

Type host:: pacara earpod trees (Enterolobium contortisiliquum) .

Meloidogyne enterolobii has a very wide host range comparable to that of M. incognita.  It includes vegetables, guava, acerola, ornamentals, and weeds. Eggplant (Solanum melongena) was the host, first reported for M. (mayaguensis) enterolobii in Puerto Rico. Other recorded hosts include bell pepper (Capsicum annuum), soybean (Glycine max), sweet potato (Ipomoea batatas), tobacco (Nicotiana tabacum), tomato (Solanum lycopersicum), and watermelon (Citrullus lanatus), coffee (Coffea arabica), bean (Phaseolus vulgaris), beet (Beta vulgaris), broccoli (Brassica oleracea var. Botrytis), celery (Apium graveolens), horsebean (Cannavalia ensiformis), parsley (Petroselynum crispum), potato (Solanum tuberosum), and pumpkin (Cucurbita sp.). 

Guava (Psidium guajava) is also a good host and the nematode has been found on other tropical fruit trees  (Annona sp., Pouteria sapota, Euphorbia longana, Chrysophyllum cainito).

Spanish needle (Bidens pilosa) is a weed host.

In Florida, M. enterolobii has been found associated with ornamentals, of angel trumpet (Brugmansia 'Sunray'), cape honeysuckle (Tecomaria capensis), glory bush (Tibouchina elegans), ajuga, carpet bugleweed (Ajuga reptans), and Uganda gloryflower (Clerodendrum ugandense). Also, Thunbergia spp., Tithonia spp., Torenia spp.,  Trachelospermum spp. and Hibiscus sp.

For an extensive host range list for this species, click

 

Back to Top

Life Cycle:

Ecophysiological Parameters:

For Ecophysiological Parameters for this species, click If species level data are not available, click for genus level parameters

Chromosome number 2n=44-46. The large number, and variability of chromosome number,are typical of species reproducing by obligate mitotic parthenogenesis. (Rammah and Hirschman, 1988; Subbotin et al., 2021).

Back to Top

Damage:

Above-ground symptoms include yellowing and stunting; roots have large galls.

In guava decline in  Brazil, M. enterolobii interacts synergistically with Fusarium solani. The fungus does not cause root-rot unless it is in a disease complex with M. enterolobii (Elling, 2013). 

 

Back to Top

Management:

Resistant cultivars and resistance induction may be alternatives to keeping populations of M. enterolobii at levels that do not cause economic damage. Resistance inducers Bacillus subtilis, B. licheniformis + B. subtilis + Trichoderma longibrachiatum and extract of Reynoutria sachalinensis did not enhance resistance of tomato genotypes, however, ASM (Acibenzolar-S-methyl), an analog of salicylic acid,  reduced reproduction of M. enterolobii to the tomato genotype PXT 408� (de Silva et al., 2020).

Host Plant Resistance, Non-hosts and Crop Rotation alternatives:

For plants reported to have some level of resistance to this species, click

Additional Information and Resources

Australasian Plant Pathology Society Factsheets on Plant-parasitic Nematodes (Prepared by Dr. Graham R. Stirling)

(Use your Return Key or click the Index Tab to return to this Nemaplex page)

 

 
Back to Top

References:

Brito, J., R. Inserra, P. Lehman and W. Dixon.  2002. The root-knot nematode, Meloidogyne mayaguensis Rammah and Hirschmann, 1988 (Nematoda: Tylenchida).  http://doacs.state.fl.us/~pi/enpp/nema/m-ayaguensis.html.

CAB International. 2001.  Meloidogyne mayaguensis in Crop protection compendium, global module, 3rd edition. Wallingford, UK: CAB International.

Carneiro, R.M.D.G., W.A. Moreira, M.R.A. Almeida, and A.C.M.M. Gomes. 2001. Primeiro registro de Meloidogyne mayaguensis em Goiabeira no Brasil. Nematologia Brasileira 25:223-228.

Carneiro, R.M.D.G., Cirotto, P.A., Silva, D.B. & Carneiro, R.G. 2007. Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. Paluma. Fitopatologia Brasileira 32, 281-284. DOI: 10.1590/S0100-41582007000400001

Collett, R.L., Marais, M., Daneel, M., Rashidifard, M., Fourie, H. 2021. Meloidogyne enterolobii, a threat to crop production with particular reference to sub-Saharan Africa: an extensive, critical and updated review. Nematology 23:247-285,

Decker, H., and M. E. Rodriguez Fuentes. 1989. The occurrence of root gall nematodes  Meloidogyne mayaguensis on Coffea arabica in Cuba. Wissenschaftliche Zeitschrift der Wilhelm-Pieck, Universitat, Rostock, Naturwissenschaftliche Reihe, 38: 32-34.

de Silva, J.O., M.V. Santana, F.A. Carneiro and M.R. da Rocha. 2020.  Reaction of tomato genotypes to Meloidogyne enterolobii and effects of resistance inducing products. Nematology 22:213-220.

Elling, A.A. 2013. Major Emerging Problems with Minor Meloidogyne Species. Phytopathology 103:1092-1102.

Karssen, G., Ji. Liao, Z. Kan, E. I. J. van Heese, L.J.M.F. den Nijs, 2012. On the species status of the root-knot nematode Meloidogyne mayaguensis Rammah & Hirschmann, 1988. ZooKeys 181:67-77.

Kermarrec, A., S. Panoma, P. Queneherve, H. Mauleon and P. Castagnone-Sereno. 2002, Genetic variability of Meloidogyne mayaguensis isolates from the Caribean. Nematology 4:171.

Rammah, A and Hirschman, H. 1988. Meloidogyne mayaguensis, n.sp. (Meloidogynidae), a root-knot nematode from Puesrto Rico. J, Nematology 20:56-68.

Subbotin, S.A. Palomares-Rius, J.E., Castillo, P. 2021. Systematics of Root-knot Nematodes (Nematoda: Meloidogynidae). Nematology Monographs and Perspectives Vol 14: D.J. Hunt and R.N. Perry (eds) Brill, Leiden, The Netherlands 857p.

Triantaphyllou, A.C. 1985. Gametogenesis and the chromosomes  of Meloidogune nataliei: not typical of other root-knot nematodes. J. Nematology 17:1-5.

Triantaphyllou, A.C. 1985. Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In Sasser, J.N. & Carter, C.C. (eds) An Advanced Treatiswe on Meloidogyne.Vol 1. Biology and Control.N.C. State Universty Graphics, Raleigh, N.C. USA.

Willers, P. 1997. First record of  Meloidogyne mayaguensis Rammah & Hirschmann, 1988: Heteroderidae on commercial crops in the Mpumalanga province, South Africa. Inligtingsbulletin - Instituut vir Tropiese en Subtropiese Gewasse 294: 19-20.

Ye, W.M., S. R. Koenning, K. Zhuo & J. L. Liao. 2013. Plant Disease 97:1262.2

 
Back to Top

Copyright © 1999 by Howard Ferris.
Revised: December 16, 2024.