Revised 01/15/26
Phylum Nematoda
Class Chromadorea
Chromadoria
Rhabditida Tylenchina Tylenchoidea
Heteroderidae Filip'ev & Schuurmans Stekhoven, 1941
Synonyms: Meloidogynidae (Skarbilovich, 1959) Meloidoderidae (Golden, 1971) Ataloderidae (Wouts, 1973)
Nematode genera in the family Heteroderidae can be divided into two major groups: the cyst nematodes in which the famale body becomes a hard-walled cyst, and the cystoid nematodes in which the body wall of the female does not harden (Subbotin et al., 2017).
Large sectors of the developing root, including areas that would have become vascular tissue are transfomed into syncytia (Heteroderidae) or giant cells (Meloidogynidae). Syncytia and giant cells have many plastids, mitochondria, ribosomes, increased rough endoplasmic reticulum and enlarged lobed nuclei.
Cell wall protruberances increase the surface area of the cell membrane for flow of solutes from the xylem to the syncytium - the transfer cell configuration (Endo, 1975).
More than 50 genes are upregulated to some extent in the development of giant cells (Meloidogyne) and syncytia (Heterodera/Globodera) (Gheysen and Fenoll, 2002). Both types of feeding cells have the genome amplified as a result of multiple shortened cell cycles; but the processes differ. Giant-cells go through repeated (acytokinetic) mitosis. Syncytia undergo repeated S-phase endoreduplication without mitosis or nuclear division.
In the root-knot nematode (Meloidogyne) feeding site there is repeated nuclear division (S and M phases of the cell cycle) but no cell division; this is called acytokinetic mitosis or karyokinesis without cytokinesis.
In the cyst nematode (Heterodera, Globodera) feeding site, the S phase of the cell cycle is activated but not the M phase. Instead, the cells repeatedly go through the S-phase (endoreduplication) and probably through parts of the G1 and G2 phases, but bypass mitosis.
Since nematodes in the Heteroderidae become sedentary from the late second stage onwards (except for the metamorphosis to males), the feeding site in the plant must be maintained in a condition favorable for perhaps five or six weeks to allow the nematode to fulfill its reproductive potential. Besides stimulation of the cell cycle events, pathogen-triggered immunity (PTI) responses, including activation of the salicylic acid pathway, must be suppressed. The salicylic acid pathway leads to production of active oxygen molecules and hypersensitive cell death. In the Meloidogynidae, a possible candidate for effector-triggered suppression of PTI is chorismate mutase, produced in the nematode esophageal glands. In PTI responses, chorismate is converted to salicylic acid to iniate the defense events. Chorismate mutase from the nematode reduces chorismate, and thus salicylic acid (Smant and Jones, 2011). In Heteroderinae, the Hg30C02 effector protein of Heterodera glycines may be involved in active suppression of host defenses. The same gene occurs in H. schachtii but not in Meloidogyne spp. (Hamamouch et al., 2012).
As of 2013, some 70 proteins, many new or unknown, have been detected in nematode secretions into plant cells (Thomas Baum, pers. com.)
Gheyson, G. and C. Fenoll. 2002. Gene expression in nematode feeding sites. Ann. Rev. Phytopathol. 40: 191-219.
Luc, Maggenti & Fortuner, Rev. Nematol. 11:159-176 (1988)
H. Ferris
Hamamouch, N., Li, C., Hewezi, T., Baum, T.J., Mitchum, M.G., Hussey, R.S., Vodkin, L.O., Davis, E.L. 2012. The interaction of the novel Hg30C02 cyst nematode effector protein with a plant b-1,3-endoglucanase may suppress host defence to promote parasitism. Journal of Experimental Botany.
Smant, G., Jones, J. 2011. Suppression of plant defences by nematodes. Chapter 13, pp 273-286. In Jones, J., Gheysen, G., Fenoll, C. (eds). Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, NY.
Subbotin, S.A., Jerry Akanwari, Chau N. Nguyen, Ignacio Cid del Prado Vera, John J. Chitambar, Renato N. Inserra and Vladimir N. Chizhov. 2017. Molecular characterisation and phylogenetic relationships of cystoid nematodes of the family Heteroderidae (Nematoda: Tylenchida). Nematology 19:1065-1081.
Return to Heteroderidae Menu
Return to Rhabditida Menu
Want more information about nematodes? Go to Nemaplex Main Menu.